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Abstract. Mobile crowd sensing (MCS) systems recently have been
regarded as a newly-emerged sensing paradigm, where the platform
receives the requested tasks from requesters and outsources the collec-
tion of sensory data to participating workers. However, the centralized
structure of the MCS system is vulnerable to a single point of failure,
and there is a lack of trust between participants and the platform. Addi-
tionally, participating in MCS is often costly. So the paramount problem
is how to solve these problems associated with centralized structures and
incentivize more participation. Most existing works design the incentive
mechanisms only considering static sensing tasks whose information is
completely known a priori (e.g., when and which task arrives). Due to
the dynamic environment and severe resource constraints, the tasks are
usually uncertain, i.e., the information of tasks is incompletely known
by the platform. Therefore, in this paper, we design an incentive mecha-
nism, HERALD, for the uncertain tasks in MCS systems by using smart
contracts. Specifically, the uncertain tasks are low sensitive to time (that
is, tasks do not require real-time information) and arrive according to
a probability distribution. HERALD utilizes the decentralized nature
of the blockchain to eliminate the system’s reliance on third parties and
satisfies truthfulness, individual rationality, as well as low computational
complexity and low social cost. The desirable properties of HERALD are
validated through both theoretical analysis and extensive simulations.
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1 Introduction

The recent unprecedented development of mobile devices which are embedded
with powerful processors and plentiful sensors (e.g., GPS, microphone, camera)
has impelled the rise of mobile crowd sensing, a newly emerged sensing paradigm
that outsources the collection of sensory data to a crowd of workers who carry
the mobile devices. Currently, numerous MCS systems have been devised and
applied to a broad scope of applications [1-5], including smart transportation,
traffic control, and so on.

However, in the process of data sharing, traditional MCS systems are gener-
ally proposed and implemented in a centralized manner under the control of the
platform, are susceptible to a single point of failure, and need to rely on a trusted
third party. Since it is not easy to solve the problems caused by a centralized
structure, and it is difficult for participants to establish a trusting relationship
with third parties, the establishment of such a platform is impractical. To solve
this problem, we use the decentralized nature of the blockchain to eliminate
the system’s dependence on third parties. In fact, as a decentralized ledger, the
blockchain is maintained by all participants in the network, effectively realizing
the decentralization feature [6]. For more complex transactions in the blockchain,
the smart contract is introduced, which was first implemented in the real world
by Ethereum in 2014 [7]. The decentralized nature of blockchain prompted us to
design an incentive mechanism using the smart contract.

A typical blockchain-based MCS system is shown in Fig. 1, all participants,
including requesters and workers, must create their accounts and interact with
the blockchain. Specifically, the requesters interact with the blockchain through
the smart contract to publish their sensing tasks, and workers interact with
the blockchain through the smart contract for the delivery of encrypted sensory
data. Most applications of the MCS system depend on the sufficient participa-
tion of mobile workers such that the quality of service can be ensured. However,
performing sensing tasks is usually costly for individual workers. For example,
collecting the sensory data of requested tasks often consumes workers’ battery
power, storage resource, computing energy, and some additional costs for data
transmission. Furthermore, it may also reveal workers’ private information dur-
ing collecting and exchanging data. It means a participant is not willing to
provide the sensory data unless receiving a satisfying reward to compensate for
the consumption. Therefore, it is necessary to design a proper incentive mecha-
nism to attract more participation such that the corresponding applications of
the MCS system can provide the sensing service with high quality.

Due to the paramount significance of incentives, many mechanisms [8-25]
have been proposed in recent years to attract more participation. Thus far,
some existing works considered the offfine scenario [8,9], where the information
of tasks and workers is known by the platform a priori, e.g., when and which
task or worker arrives. Furthermore, some works considered the online scenario
[13], where the workers arrive dynamically in an online manner and the platform
must collect the sensory data from the arrived workers without the information
of future arriving workers. In particular, most of them are under the assumption
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Fig. 1. A typical blockchain-based MCS system.

that the sensing tasks are static whose information is completely known by
the platform a priori. However, due to the complicated practical environment,
the sensing tasks are usually uncertain and their information is incompletely
known by the platform e.g., when and which task arrives. Therefore, it requires
us to use smart contracts to design a blockchain-based incentive mechanism in
the MCS system under uncertain sensing tasks, which has nice properties e.g.,
truthfulness, individual rationality, and low social cost.

Usually in the MCS system, for some tasks that do not require real-time
performance, for example, when the requested task is to collect the number of
bends on a road, the number of forks, or information about shops on both sides of
the road, the platform can collect such task data in advance. It may incur heavy
latency and lower efficiency if the platform collects the sensory data after the
sensing tasks arrive. Therefore, the platform needs to collect the sensing tasks
before the real tasks arrive such that the sensory data can be obtained once
they arrive. Since the platform collects the tasks from the workers before the
real tasks arrive, which causes it does not know any information about sensing
tasks, e.g., when and which tasks will arrive in the future. Therefore, we refer
to this scenario as a uncertain scenario.

However, due to the uncertain nature of sensing tasks in the above practical
scenario, it is difficult to design a proper incentive mechanism, which can guaran-
tee the truthfulness and individual rationality which are two basic requirements
in the design of an incentive mechanism, and meanwhile maintain the low com-
putational complexity and low social cost. Therefore, to design a mechanism in
the uncertain scenario, we assume that the tasks arrive in the future accord-
ing to a probability distribution. Considering the above scenario with uncertain
tasks, we propose an incentive mechanism based on blockchain and smart con-
tracts, namely, HERALD!, which utilizes the decentralized nature of blockchain
to eliminate the system’s dependence on third parties and satisfies the truthful-
ness and individual rationality, as well as the low computational complexity and
social cost. In summary, the main contributions of this paper are as follows.

! The name HERALD is from incentive mecHanism for uncERtAin tasks in mobiLe
crowD sensing.
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— Mechanism: Unlike the prior works, we propose a novel blockchain-based
incentive mechanism, HERALD, using the smart contract. In particular,
HERALD is designed for the uncertain scenario such that the smart con-
tract can collect the sensory data before the real tasks arrive by assuming the
tasks arrive in the future according to a probability distribution.

— Properties of HERALD: HERALD can stimulate the participation of workers
and bears many desirable properties, including truthfulness, individual ratio-
nality, low computational complexity, and low social cost. Although some
incentive mechanisms [8-11] have been proposed for the traditional MCS,
they are simply designed to collect massive sensory data, which can not be
applied in this work. Furthermore, we prove that its competitive ratio on
expected social cost is O(Inmn), where m and n are the numbers of workers
and tasks published in advance.

— FEwvaluations: We further conduct extensive simulations to validate the desir-
able properties of HERALD. The simulation results show that compared with
state-of-the-art approaches, HERALD has the lower expected social cost and
expected total payment.

In the rest of this paper, we first present some existing works that are related
to this work in Sect. 2 and introduce the preliminaries in Sect. 3. Then, the design
details and theoretic analysis of HERALD are described in Sect. 4. In Sect. 5, we
conduct extensive simulations to validate the desirable properties of HERALD.
Finally, the conclusion of this paper is shown in Sect. 6.

2 Related Work

Due to the paramount significance of attracting more participation, various
incentive mechanisms [8-25] for MCS systems have been developed recently.
Apart from truthfulness and individual rationality, which are two critical prop-
erties in the incentive mechanism, these works also aim to guarantee the benefit
of workers or platforms.

The authors in [8,9] designed the mechanisms to minimize the social cost.
The proposed mechanisms in [10,11] maximized the platform’s profit. The mech-
anisms designed in [12-18] minimized the platform’s payment. Additionally, the
authors in [19-21] devised the mechanisms that maximize social welfare. Apart
from the above optimization objectives, there are also some works focusing on
some other objectives. Hu et al. in [22] proposed a privacy-preserving incentive
mechanism in dynamic spectrum sharing crowdsensing. Bhattacharjee et al. in
[23] stimulated the workers to act honestly by investigating their data’s quan-
tity and quality. Han et al. in [24] considered the privacy-preserving in budget
limited crowdsensing. Gong et al. in [25] proposed an incentive mechanism to
stimulate workers to submit high-quality data.

Almost all existing works recruit workers to collect the corresponding sensory
data under the static sensing tasks whose information is completely known by the
platform a priori. However, due to the complicated practical environment and
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Fig. 2. Framework of HERALD where the tasks arrive according to a probability dis-
tribution. (The circled numbers represent the order of events).

severe resource constraints, the sensing tasks are usually uncertain, i.e., their
information is incompletely known by the platform. Therefore, different from
the existing works, this paper is the first attempt to propose a novel incentive
mechanism for the uncertain tasks in MCS systems by using smart contracts.
Specifically, the uncertain tasks arrive according to a probability distribution
and the platform does not know any information about these tasks.

3 Preliminaries

In this section, we introduce the system overview and design objectives.

3.1 System Overview

We consider a blockchain-based MCS system consisting of a smart contract and a
set of participating workers which is denoted as W = {1,2,...,m}. In HERALD,
we assume that the smart contract has a set 7 = {r,...7,} of n sensing tasks
known a priori and all requested tasks arriving in the future belong to 7. This
assumption is rational since, in practice, the smart contract usually knows which
tasks need to be completed. For example, in the service of a traffic monitor,
the task set is the collection of forks on all roads in a region, with each task
corresponding to the number of forks on each road. The task set in this service
does not change over time and has no real-time requirements, and the data
requests should be within the task set regardless of when they arrive. Similar
service includes road curve monitor. The framework of HERALD is shown in
Fig. 2, whose workflow is described as follows.

Incentive Mechanism for Uncertain Scenario: As shown in Fig.2, the
smart contract first publishes all sensing tasks in 7 to workers before the real
requested tasks arrive (step (D). After receiving the task set 7, every worker i
sends her preferred task set denoted as I; C 7 to the smart contract, as well
as a bid b;, which is her bidding price for executing these tasks (step 2)). Based
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on the received bids, the smart contract determines the set S of winners and
the payment p; to each winning worker ¢ (step @), and collects the winners’
sensory data (step @) such that the requested tasks are responded immediately
when they arrive in the future. Note that since the smart contract collects the
sensory data of tasks in 7 before the requested tasks arrive and do not know
any information about the future tasks, we assume that all tasks in 7 arrive in
the future following probability distribution.

Specifically, a loser does not execute any task and receives zero payment in
the incentive mechanism. For notational convenience, we denote the payment
profile of workers in this paper as p = (p1,...,Pm). When we denote the real
cost of worker i as ¢; in HERALD, her utility can be defined as

(1)

Without loss of generality, in this paper, we assume that the bid b; of each
worker 7 is bounded by [bin, bmaz], Where by, is normalized to 1 and by,q. is
a constant. We further assume that for each worker ¢ with a preferred task set
I, there exist some workers j with preferred task sets I'; such that I C U;1}.

p; — ¢; if worker 4 wins
U; = .
0 otherwise

3.2 Blockchain and Smart Contract

The incentive mechanism proposed in this paper, HERALD, which is based
on the blockchain with a smart contract, removes the centralized nature of
a centralized MCS system to avoid single points of failure and resolve trust
issues between participants. Specifically, each participant including requesters
and workers needs to create their account and interact with the blockchain. The
requesters and workers interact with the blockchain through the smart contract
to complete their task publish and encrypted sensory data delivery, respectively.
Each worker registers at the registration authority (RA) and gets a certificate
such that they can participate in the MCS. This step is described as follows.

Registration for the In-Chain Participants: RA generates a public-secret
key pair for the certification and broadcasts. Then, each arrived worker with a
unique ID creates a public-secret key pair for the signature and registers with
RA. Furthermore, the worker gets a certificate from RA to bind the public key
and her ID by utilizing the secret key. Similarly, each arrived requester with a
unique ID creates a public-secret key pair for the signature and registers with
RA. The requesters get a certificate from RA to bind the public key and their
ID by utilizing the secret key.

The worker submits the encrypted data to the SC. The corresponding oper-
ations of workers are as follows.

Operation of Workers: After receiving the corresponding information, the
worker encrypts the sensory data with the signature and address to obtain the
ciphertext utilizing the public key of the requester. Then, the encrypted data is
sent to Smart Contract and can be optionally saved on a decentralized storage
system such as Swarm or IPFS. The truth of data is verified by an attestation
service.



Incentive Mechanism Design for Uncertain Tasks 481

3.3 Design Objectives

In this paper, we aim to ensure that HERALD bears the following advantageous
properties.

Due to workers’ selfish and strategic nature, it is possible that any worker 4
may submit a bid b; that differs from her real cost ¢; for executing all of tasks
in I;. Therefore, one of our goals is to design a truthful incentive mechanism
defined as follows.

Definition 1 (Truthfulness). An incentive mechanism is truthful if for any
worker © € W, her utility is mazimized when bidding her real cost c;.

By Definition 1, we aim to ensure that workers bid truthfully to the smart
contract. Apart from truthfulness, another desirable property that we aim to
achieve is individual rationality defined as follows.

Definition 2 (Individual Rationality). An incentive mechanism is individ-
ual rationality if, for any worker i € W, her utility u; satisfies u; > 0.

Additionally, for HERALD, since the tasks in 7 arrive according to a prob-
ability distribution, we also aim to ensure it has a low expected social cost. To
achieve this goal, we investigate its competitive ratio on expected social cost
defined as follows.

Definition 3 (Competitive Ratio on Expected Social Cost). When the
tasks in sensing task set T arrive according to a probability distribution, for
any set A of k tasks that possibly arrive simultaneously from T, let S(A)
be the set of winners selected by the mechanism such that A C Ujcsayl;
and I;y N A # 0 for Vi € S(A), C(S(A)) = > ies(a) G be the correspond-
ing social cost, and Copr(A) be the minimum social cost of requested task
set A, respectively. The competitive ratio on expected social cost is defined as
maxy E4c7[C(S(A))/Eact [Copr(A)], where Eqct[] is the expectation over
all sets of possibly k arriving tasks in the future.

Note that some tasks in task set A may be identical. Therefore, when we say
A C 7T in the investigation of competitive ratio, it means that every task in A is
also in 7 since the tasks in 7 are distinct. Furthermore, the expectation E g4c 7[]
is caused by the variety of the set A of k requested tasks, and for convenience
of notation, the subscript A C 7 is omitted in the remainder of this paper, i.e.,
this expectation is denoted as E[-].

Finally, we aim for HERALD to be computational efficient which is defined
as follows.

Definition 4. An incentive mechanism is computationally efficient if it can be
carried out in polynomial time.

In short, our objectives are to ensure the proposed mechanisms are truthful
and individual rationality, as well as have low social cost and low computational
complexity.
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4 Incentive Mechanism for Uncertain Scenario

In this section, we present an incentive mechanism for the uncertain scenario.
It will be proved that our mechanism is individual rationality and truthfulness.
Furthermore, we investigate its competitive ratios on expected social cost, which
is shown in Theorem 3. Apart from the above properties, we also show its com-
putational complexity in Proposition 1.

4.1 Design Rationale

When designing the incentive mechanism, we usually need to consider the num-
ber of tasks that arrive simultaneously since different numbers of tasks arrive
simultaneously usually for different scenarios, and result in different mechanisms.
In the offline scenario, all tasks arrive simultaneously such that the information
of tasks is completely known by the smart contract a priori. However, in the
uncertain scenario, due to the uncertain tasks, the number of tasks arriving
simultaneously is also uncertain. The different numbers of the arrival of tasks
follow a different probability distribution, which will be illustrated by the fol-
lowing simple example.

Example 1. In this example, the smart contract has a sensing task set 7 =
{71, 72, T3} with three tasks, each of which arrives in the future with probability
%, i.e., the arrival of tasks follows a uniform distribution. If only one task arrives
simultaneously in the future, it may be 71, 75, or 73 with the same probabil-
ity of % While, if two tasks arrive simultaneously in the future, they maybe
{m1, 71}, {72, 72} and {73, 73} with the same probability %, and may be {1, 72},
{r1,73} and {72, 73} with the same probability %. Furthermore, if three tasks
simultaneously arrive in the future, they maybe {71, 72,73} with probability %;
{m1,71,71}, {72, T2, T2} and {73, 73, 73} with the same probability 2—17; and may be
{r1, 72,72}, {1, 73,73}, {11, 71,72}, {71,701, 73}, {72, 72,73}, and {7, 73,73} with
the same probability %.

As shown in the example, different from the existing works, where the num-
ber of tasks arriving simultaneously is fixed, in the uncertain scenario, due to
the uncertainty of tasks, the number of tasks varies. Therefore, we propose the
HERALD, which is an adaptive incentive mechanism based on the different num-
bers of tasks arriving simultaneously. In particular, we need to input an assumed
number to the HERALD, which is the number of tasks arriving simultaneously.
Then, according to the different input numbers, HERALD will output different
results of winner selection and payment determination.

4.2 Design Details

To collect the sensory data of the uncertain tasks, we define a selection threshold
(ST) T > 0 in HERALD. In particular, let T' = 64E[Cop7(A)], where A is the
set of k possibly simultaneously arriving tasks from the sensing task set 7, and
64 is set for facilitating the proof mentioned later. HERALD works as follows.
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Algorithm 1: HERALD in the Smart Contract
Input: The task set 7, worker set W, workers’ preferred task sets I';, workers’
bids b;, the number k of tasks arriving simultaneously.
Output: The winner set S, and payment p’;
18— (Z);
2 Smart contract calculates the selection threshold T’
// Winner Selection Phase by Smart Contract:
3 while 7 # () do
4 for each worker i € VW do
5 Calculate the cost-effectiveness (CF)
// Type I Selection
if eWw, st \Fm’| ‘T‘ then
Choose a worker ¢ € W with the minimum value of CF denoted as

nT| mT\

B % among the workers whose CF's are less than %;
// Type II Selection:
8 else
9 Choose a worker ¢ € W, whose bid b; is the least and preferred task
set contains at least one uncovered task;
10 S — Sui};
11 T — T\I3;
// Payment Determination Phase by Smart Contract:

=

12 for each i€ S do

13 Define a copy set T; «— I7;

14 Build a covering set W; = {j|Vj € W\{i}, I, NT; # 0};
15 Define a replaced set R; «— 0;

16 while 7; # 0 do

17 Choose a worker j € W; with the minimum CF denoted as %,
5NT;

18 Ri — R;U {j},

19 T, — T\Ij;

20 | pie max{bi, pr, } for pr, = 3> cr. bj;
21 Return S and 7.

Winner Selection Phase: In each iteration, there exist two types of selections
in HERALD, namely, type I selection and type II selection.

— Type I Selection: When there are some workers whose cost-effectiveness (CF)
is less than or equal to %, the smart contract selects a worker with the least
CF as the winner. Note that, for worker 4, if I; N7 = 0, then its CF = +oo0.

— Type II Selection: When the CFs of all workers are larger than %, the smart
contract selects a worker as the winner, whose bid is the least and preferred
task set contains at least one uncovered task in 7.

It then adds the winner selected above to the winner set S.
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Payment Determination Phase: For each winner ¢ € S, the smart contract
defines a copy set T, = I; and builds a covering set W, = {j|Vj € W\{i}, I; N
T; # 0}. It then derives a replaced set denoted as R; consisting of workers in W;
with the least CFs in each iteration such that Iy C Ujer,I;. The payment to

winner i is p; = max{b;, pr, }, where pr, =3z, b;.

Ezample 2. In this example, the smart contract has a task set 7 = {71, 72, 73, 74,
75} with five tasks and there are seven workers with the preferred task sets I'7 =
{rmet, In = {re, 1}, I's = {m3, 71,7}, I = {74, 75}, I5 = {71}, I's = {m2, 75}
and I = {12, 74,75}, as well as the costs ¢; = 1.4, co = 1.8, ¢5 = 2.8, ¢4 = 2.6,
c5 = 3.1, cg = 3.3 and ¢7 = 3.6. Since the mechanism HERALD is truthful which
will be proved later, the workers’ real costs are equal to their bids, i.e., b; = ¢;. We
assume that the arrival of tasks follows a uniform distribution. When the input
number of tasks arriving simultaneously is set to 1, i.e., only one task arrives
at each time, the task may be 7y, 19, 73, 74, or 75 with the same probability %
Then, it can be obtained that the selection threshold T' = 125.44. As shown in
Algorithm 1, the smart contract will carry out the winner selection phase. For
the first iteration, after calculating the cost-effectiveness of all workers, it can be
seen that the condition in Line 6 of HERALD is satisfied. Therefore, the smart
contract carries to type I selection and selects worker 1 as the winner. Then,
the second iteration is carried out, where the condition in Line 6 of HERALD
still holds. Thus, the type I selection is carried out, and worker 4 is selected
as a winner. With the same iteration, it can be obtained that the final winner
set selected by the HERALD is S = {1,2,4}. Then, the smart contract carries
out the payment determination phase. In particular, for worker 1 whose
covering set is W, = {2, 3,6, 7}, it can be seen that the corresponding replace set
is R1 = {2, 3}. Therefore, the smart contract to worker 1 is p; = 1.84+2.8 = 4.6.
After the similar steps, it can be obtained that the payments to worker 2 and
worker 4 are p, = 1.4 + 2.8 = 4.2 and py = 3.6.

Furthermore, when the input number of tasks arriving simultaneously is set
to 2, the tasks may be {11, 71}, {72, 72}, {73, 73}, {74, 74}, {75, 75} with the same
probability %, and {71, 72}, {m1, 73}, {71, 74}, {11, 75}, {72, 73}, {72, Ta}, {72, 75},
{73, 74}, {73, 75}, {74, 75} with the same probability Z. The selection threshold
is T = 181.248. Then, the smart contract can carry out the winner selection
phase and payment determination phase of HERALD sequentially to obtain
the winner set and the corresponding payments.

Remark 1. It can be seen that when we fix the input number as the total number
of tasks n in the task set of the smart contract, HERALD has a probability of
’22 degraded to an offline incentive mechanism, which means that the HERALD
can be applied to more scenarios compared with the existing offline incentive
mechanisms.

4.3 Analysis

In this subsection, we will prove that HERALD satisfies the properties mentioned
in Sect. 3.3.
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Theorem 1 ([26]). A mechanism is truthful if and only if

1) The selection rule is monotone: If worker i wins by bidding b;, she also wins
by bidding b; < b;;

2) Each winner is paid the critical value: Worker i would not win if she bids
higher than this value.

Theorem 2. HERALD is truthful.

Proof. To prove the truthfulness of HERALD, we will show it satisfies the con-
ditions mentioned in Theorem 1.

Monotone: For a worker ¢, once she wins by bidding b;, we will show that she
will also win by bidding b, < b; through the following two cases.

Case 1: In an iteration of the winner selection phase, when the CF of winning
worker ¢ satisfies U“,l)Tﬂ < %, it means that she has the minimum CF among
all workers. Therefore, she will also win by bidding b, < b;.

Case 2: In an iteration, when the CF of winning worker i satisfies i Fibrlﬂﬂ >

% it means that she has the minimum cost among workers and there is not
any worker j with 0T mT| < IT\ We then need to consider two subcases.

Subcase 2.1: When the bid b; < b; satisfies % > I%’ it means that she

will also win by bidding b} since b} is the minimum and there is not any worker
. . b T
J with W < ek

Subcase 2.2: When the bid b; < b; satisfies W < m

will also win by bidding b} since she is the only worker with CF being less than
or equal to T.

it means that she

Critical Value: When a worker ¢ wins, it can be seen that her payment is
pi = max{b;, pr, }, where pr, = 3, b;. When worker i increases her bid b;

to ’51, such that Zl < pRr,, her payments are always the same. However, when
b; > pr,, we need to consider the following two cases in each iteration of the
winner selection phase.

Case 1: When CF of worker ¢ satisfies

IF ﬂTI < IT\ we will prove that there

. b Zjen,- b;
is a worker k£ in R; such that IFWTI < AT mT| We have T mT| > o 1G0T

Then let worker k be the one with the minimum CF W in R;, which means

that 7 mT| < a7 m’\ for Vj € Ry, t.e., bp|I; N T| < b;|I, N T|. Therefore, we
. Sier, bj .
have by, Z]ER I NT| <IN T er, by, dee. |FbrkwT| < ZE:T}'“TI' Since

by
TwnT|] = LNT| r‘nT\
this iteration.

Case 2: When CF of worker i satisfies U“.I)Tiﬂ > %, we need to consider two

the smart contract will select worker k instead of worker ¢ in

subcases.
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Subcase 2.1: Once there exist some workers j € R; such that “ﬂfiéﬂ < %,
the smart contract will select a worker k& among them with the minimum CF
instead of worker 1.

Subcase 2.2: Once the CFs of all workers j € R; satisfies mbi‘;ﬂ > %, the
smart contract will always find a worker k with the minimum bid b such that
b < pr, < b;, which means that the smart contract will not select worker <.

Therefore, the conclusion holds. a
Lemma 1. HERALD is individual rationality.

Proof. As proved in Theorem 2, each worker bids her real cost ¢;. The individual
rationality of HERALD is guaranteed by the fact that the payment to each
winner 4 is p; = max{b;,pr,} > b; = ¢;. m|

Apart from truthfulness and individual rationality, it will be seen that HER-
ALD has low computational complexity.

Proposition 1. The computational complexity of the HERALD is O(m?+mn).

Proof. To obtain the computational complexity of HERALD, we need to sepa-
rately consider the winner selection phase and payment determination phase.

1) Winner Selection Phase: The main loop (Lines 4-11) of the winner selection
phase terminates in the worst case after n iterations. In every iteration, it
takes m times to carry out type I selection to find the worker with the min-
imum bidding price effectiveness (Lines 6-7), or type II selection to find the
worker with the minimum bidding price (Lines 8-9). Therefore, the compu-
tational complexity of the winner selection phase is O(mn).

2) Payment Determination Phase: Similarly, the main loop (Lines 12-20) of the
payment determination phase terminates at worst after m iterations. In each
iteration, it takes m iterations to build a covering set (Line 14) and other n
iterations to build a replaced set (Lines 16-19). Therefore, the computational
complexity of the payment determination phase is O(m? + mn).

Combining the winner selection phase and payment determination phase, the
computational complexity of HERALD is O(m? + mn). |

In the following parts, we will show the competitive ratio on expected social cost
achieved by HERALD when the tasks in 7 arrive following a uniform distribu-
tion. To derive the competitive ratio on the expected social cost of HERALD,
we consider the costs of type I selection and type II selection separately.

Lemma 2. When the arrivals of tasks in the task set T follow a uniform dis-
tribution, the competitive ratio on expected social cost achieved by HERALD
through type I selection is O(Inn).

Proof. Let St = {1,...,h} be the workers selected by HERALD through type
I selection in this order. Moreover, let 7; denote the set of tasks whose sensory
data is not collected just before worker i is selected. Since HERALD carries out
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type I selection, ¢; < |I; OT|%”‘T(M where A is a subset of k tasks possibly

arriving simultaneously from 7. Hence, the social cost of workers in S; can be
bounded by

64|I; N T;|E[C 1
Z Z | | OPT(A)] < 64E[COPT(A)] Z 27 (2)
i€ST i€ST |T| t=1
which is at most 64E[Cop7(A)]Inn. Therefore, the conclusion holds due to the
property of expectation. O

It remains to bound the expected cost of workers selected by the type II
selection. To show the expected social cost of workers selected by HERALD
through type II selection, we need the following notations. Let S;r = {1,...,¢}
be the workers selected by HERALD through type II selection in this order.
Let 7; be the set of tasks whose sensory data is not collected just before worker
i is selected. Let n; = |T| and k; = nzk be the number of tasks in T and
the expected number of requested tasks arriving from ’TZ, respectively. Denote
by A; the subset of A obtained by taking requested tasks only belonging to
7;. Furthermore, for any set of A, let S*(A) be the set of workers with the
minimum social cost. Then, let S’(A;) be the subset of S*(.A) such that for each
task 7; € A;, the worker in §’(\A;) has the preferred task set containing task 7;
and has the least cost among workers in S*(A).

Lemma 3. When the arrivals of tasks in the task set T follow a uniform dis-
tribution, the competitive ratio on expected social cost achieved by HERALD
through type II selection is O(Inmn).

Proof. Recall that the set of workers selected by HERALD through type II
selection is S;y = {1,...,¢}. Set kyy1 = 0 and ¢y = 0 for notational convenience.
Moreover, let j be k; > 8In2n but k;j4; < 8In2n. Hence, we see at most 81n2n

tasks from 7;4; in expectation. Since each of these tasks is carried out by a
worker who does not cost more than the one carrying out it in S*(A), the cost
incurred by workers j + 1,...,£ is bounded by 81n2nE[Cop7(A)]. Then, the
expected cost incurred by using the remaining workers 1, ..., j satisfies

z]: aPrlAN (I NT) # 0]

7,+1CT\ 7

J

<> GE[AN(NT)| ZCZ (AN (T\Tis1)]]

i=1
'7 =
Zcz k —k’erl OSOZ]%(C-L‘—CZ‘ 1 21615 |S lnm '—Ci,1) (3)
i=1 i

= 1610m (B (Aye) +ch( 15'(A0) EHS/(AZ-H>|1)>

(g 161nm(E[C (Aj+1))] Z ( - E[O(S/(Ai+l))]>>

< 16InmE[Copr(A)],
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where inequalities (a) and (b) hold based on the Lemma 3.5 and Lemma 3.4 in the

reference [27] respectively. As mentioned before, Zfsz ¢ Pr[AN(LNT) # 0] <
81n 2nE[Copr(A)]. Therefore, the expected cost incurred by workers 1,...,¢
satisfies Zle ¢Pr[AN(I;N7T;) # 0] < [8ln2n + 161nm] - E[Copr(A)]. Then
¢ ciPr[AN(INT;) #0)
E[CopT(A)]

we have < O(lnmn), this proof is completed. O

Finally, by combining Lemma 2 and Lemma 3, we have the following theorem.

Theorem 3. When the arrivals of tasks in the task set T follow a uniform
distribution, the competitive ratio on expected social cost achieved by HERALD
is O(lnmn).

According to Theorem 3, we can obtain the conclusion that HERALD
achieves a low expected social cost, which means that it can be applied to many
other scenarios with uncertain sensing tasks.

5 Performance Evaluation

In this section, we introduce the baseline methods, simulation settings, as well
as simulation results of the performance evaluation of our proposed HERALD.

5.1 Baseline Methods

COst-effectiveNEss greedy auction (CONE): For the uncertain scenario, the
smart contract only knows that the tasks in 7 arrive in the future with a prob-
ability distribution. Therefore, to collect sensory data for these tasks, the smart
contract calculates the CF of each worker and selects worker ¢ as a winner, whose
CF ‘Fbir’]ﬂ is the least among those of workers in each iteration. The smart con-
tract then obtains the sensory data of worker 1.

COSt greedY auction (COSY): For the uncertain scenario, to collect sensory
data of these tasks, the smart contract compares the bids of workers and selects
worker ¢ as a winner, whose bid b; is the minimum among those of workers and
preferred task set I'; contains at least one uncovered task in each iteration. Then,
the smart contract collects the sensory data of worker i.

The payment determination phases of both CONE and COSY are the same
as HERALD. Clearly, CONE and COSY are truthful and individual rationality.

5.2 Simulation Settings

We show the evaluation parameters for different cases in Table 1, where ¢; is the
cost of worker ¢ for executing her preferred task set I'; and |I7;| is the number of
tasks in the preferred task set. Furthermore, m, n are the numbers of workers
in worker set W and sensing tasks in the task set 7, respectively. Additionally,
k is the number of tasks possibly arriving simultaneously in the future in the
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Table 1. Simulation Settings for HERALD.

Settings | Individual cost ¢; Number || of Number m | Number n of | Number & of
preferred tasks of workers | sensing tasks |arriving tasks

I [5,20] (15,20] [70,160] 150 120

11 [5,20] (15,20] 70 (90, 180] (60, 150]

111 [5,10], [10,15],[15,20] | [20, 25] 80 [70,160] (50, 140]

v [15,25] (10,15],[15,20], [20, 25] | [60,150] 160 100

uncertain scenario. For the convenience of representation, k is briefly referred to
as the number of arriving tasks.

In our evaluation, for HERALD, we show the influences of the numbers of
workers and sensing tasks on the expected social cost and expected total pay-
ment. Specifically, to evaluate the impact of the quantity m of workers in worker
set W, we increase it from 70 to 160 by fixing the number n of sensing tasks
and the number k of arriving tasks to 150 and 120, respectively, i.e., setting 1.
Furthermore, to evaluate the impact of the quantity n of sensing tasks, we vary
it from 90 to 180 and increase the number k of arriving tasks from 60 to 150 with
the quantity m of workers fixed to 70, i.e., setting II. Additionally, in setting I
and setting II, the cost ¢; of worker ¢ and the number of tasks in her preferred
task set I; are sampled uniformly and independently at random in the intervals
[5,20] and [15, 20], respectively.

Nextly, we investigate the impacts of worker’s costs on the expected social
cost and expected total payment obtained by HERALD, respectively. In partic-
ular, to evaluate the impacts of worker’s cost ¢;, we select it in three distinct
intervals, i.e., [5,10], [10,15] and [15,20] in setting III, respectively, where the
number |I;| of tasks in preferred task set is sampled in the interval [20,25].
Furthermore, in setting I1I, the number m of workers is fixed to 80, while the
number n of sensing tasks and the number k of arriving tasks vary from 70 to
160 and 50 to 140, respectively.

Finally, we evaluate the impacts of the number of workers’ preferred tasks
on the expected social cost and expected total payment derived by HERALD,
respectively. Specifically, we select the number |I;| of tasks in each preferred
task set in three distinct intervals, i.e., [10, 15], [15,20] and [20, 25] in setting IV,
respectively, where the cost ¢; of each worker is sampled in the interval [15,25].
Furthermore, in setting IV, the number n of sensing tasks and the number k
of arriving tasks are fixed to 160 and 100, respectively, while the number m of
workers varies from 60 to 160.

5.3 Simulation Results

In Fig. 3, we evaluate the impact of the number of workers. Specifically, Fig. 3(a)
and Fig. 3(b) show the impact on the expected social cost and expected total
payment derived by HERALD. It is shown that HERALD outperforms CONE
and COSY. Interestingly, with the increasing number of workers, the expected
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social cost and expected total payment calculated by HERALD decrease. This is
because with the increasing number of workers, for each task, the smart contract
has more opportunities to collect sensory data from the worker whose cost is less.
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Fig. 3. (a) Expected social cost versus different numbers of workers for the uncer-
tain scenario. (b) Expected total payment versus different numbers of workers for the
uncertain scenario.
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Fig. 4. (a) Expected social cost versus different numbers of sensing tasks for the uncer-
tain scenario. (b) Expected total payment versus different numbers of sensing tasks for
the uncertain scenario.

In Fig. 4, the impact of the number of tasks is also investigated. Specifically,
Fig.4(a) and Fig. 4(b) show the impact on the expected social cost and expected
total payment derived by HERALD. Similarly, it can be seen that HERALD
outperforms CONE and COSY. Additionally, with the increasing number of
tasks, the expected social cost and expected total payment calculated by HER-
ALD increase. This is because with the increasing number of tasks, the smart
contract needs to collect sensory data from more workers.
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In Fig. 5, we show the influence of the worker’s cost. In particular, Fig. 5(a)
and Fig. 5(b) plot the influence on the expected social cost and expected total
payment obtained by HERALD. It can be seen that the higher worker’s cost
means the higher expected social cost and expected total payment in HERALD
since the higher cost of the worker means that for the same tasks, the workers
need more social cost and the smart contract needs more payment compared to
the scenario with the lower cost of the worker.
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Fig. 5. (a) The impact of worker’s cost on the expected social cost obtained by HER-
ALD for uncertain scenario. (b) The impact of worker’s cost on the expected total
payment obtained by HERALD for uncertain scenario.
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Fig. 6. (a) The impact of the number of worker’s preferred tasks on the expected social
cost obtained by HERALD for uncertain scenario. (b) The impact of the number of
worker’s preferred tasks on the expected total payment obtained by HERALD for
uncertain scenario.

We finally investigate the influence of the number of workers’ preferred tasks
in Fig. 6. In particular, Fig. 6(a) and 6(b) give the impact on the expected social
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cost and expected total payment obtained by HERALD. It can be observed that
the more preferred tasks of each worker decrease the expected social cost and
expected total payment in HERALD. This is because compared to the scenario
with the less preferred tasks of each worker, the smart contract needs fewer
workers to execute the requested tasks due to the more preferred tasks of each

worker, which results in the less expected social cost and expected total payment
in HERALD.

6 Conclusion

In this paper, we design an incentive mechanism, HERALD, for the uncer-
tain tasks in MCS systems by using smart contracts. Specifically, the uncertain
tasks arrive according to a probability distribution such that the smart contract
does not have any information on the tasks. HERALD utilizes the decentralized
nature of the blockchain to eliminate the system’s reliance on third parties. It is
proved that HERALD satisfies truthfulness, individual rationality, low compu-
tational complexity, and achieves an In mn competitive ratio on expected social
cost. Finally, HERALD’s desirable properties are validated through theoretical
analysis and extensive simulations.
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